

Testing Performance Efficiency of Innovative Nutrient Reduction Technologies with In-Situ Mesocosms

Mary Szafraniec, Laurie Smith, Sara Phelps, Francesca Lauterman

8th Biennial UF Water Institute Symposium February 22, 2022

Outline

- Overview of Sediment Management Approach and Benefits
- Case Study
- Summary

Sediment Management Approach and Benefits

How does sediment quality impact water quality?

- +Stabilize sediments for aquatic vegetation establishment and growth
- +Reduce algal blooms
- -Resuspension
- -Diffusion
 - Release nutrients and other pollutants to water column
 Source or sink for pollutants – internal cycling

Approaches to Sediment Management

No Action

 Natural Attenuation

Cap/Inactivate

- "Clean" fill
- Biological
- Chemical Inactivation
 - Alum
 - Phoslock
 - Flock & Lock
 - Virophos
 - Nclear TPX
 - Coated sand

Dredge/Dewater

- Mechanical
- Hydraulic

DMMAs Geotextile tubes Subaqueous Wastewater plant Islands Relocation

How and When to Pursue a Sediment-Focused Waterbody Management Project

- Waterbody or alternatives analysis studies indicate that sediment cycling generates a significant portion of the pollutant loading
- Untreated stormwater inputs are limited or being addressed
- Upstream sediment transport is limited or has been addressed
- Treatment alternatives analysis has been conducted
- Funding source has been identified

wood.

Sediment Phosphorus Fractionation

Nuisance algae most readily utilize biologically available phosphorus - BAP

Treatment Alternative Analysis Bench Scale Sediment Flux

Intact sediment core incubations to measure flux (release) of nutrients or other pollutants

wood

A presentation by Wood.

City of Lakeland Crystal Lake Mesocosm Study

- Crystal Lake is verified impaired (per FDEP 3030(d) list) for total phosphorus (TP), total nitrogen (TN) and chlorophylla, and has regularly documented harmful algal blooms (HABs).
- Phased project Phase I: Nutrient and hydrologic budget
 - Sediment = primary source
- Deferred TMDL with a 4e Pollutant Reduction Plan (PRP)
 - Developed restoration alternatives
 - Sediment management is top priority -Phase II
- Cooperative funding obtained from SWFWMD

Mesocosm Study

Evaluate effectiveness of various treatment alternatives

Mesocosm Study Design

- 6 limnocorrals each in Crystal Lake and Lake Parker (2m D x 4m h)
 - 2 Virophos replicates
 - 2 Phoslock replicates
 - 2 Control replicates (bare sediment)
- Product application in October 2021
- Test period includes wet and dry seasons

In-mesocosm Water Quality

13

In-mesocosm Water Quality

In-mesocosm Water Quality

Crystal Lake

ControlCL

SP4005CL

VirophosCL

In-mesocosm Water Quality

Lake Parker

16

Sediment P Fractionation (Pre-application)

		Biologically Available P (BAP)				Not Available	
Location	% Solids	Labile P	Reductant- Soluble P	Metal- Oxide P	Organic P	Apatite and Residual P	Total P
Control	71	1	2	17	9	60	89
SP-4005	15	2	7	78	64	2,027	2,178
Virophos	65	1	2	27	24	120	140

Summary

- Internal loading from nutrient-laden organic sediments can be a significant source of water quality impairments
- Understanding and quantifying internal loading potential is critical
- Sediment capping and chemical inactivation may result in significant load reduction that is highly cost-effective and direly needed in many lakes in FL
- Reduced internal loading can reduce HAB abundance and improve water quality
- Additional evaluation of benefits from sediment capping are needed
 - Specifically measuring the offset of additional organic sediment accumulation from internal cycling and algal proliferation
- Need to better understand how effective products are *in-situ*

*Sediment capping projects are not **currently** permittable in Sovereign Submerged Lands

wood.

Contact Information:

Mary Szafraniec, PhD, PWS

Principal Scientist Wood Environment & Infrastructure Solutions <u>Mary.Szafraniec@woodplc.com</u> Mobile 813.748.3625

